Spring自动装配之依赖注入 依赖注入发生的时间 Spring IOC容器完成了Bean定义资源的定位、载入和解析注册以后,IOC容器中已经管理类bean定义的相关数据,但是此时IOC容器还没有对所管理的Bean进行依赖注入,依赖注入在两种情况发生:
用户第一次调用getBean()方法时,IOC容器出发依赖注入。
当用户在配置文件中将bean元素配置了Lazy-init=false属性,即让容器在解析注册bean定义时进行预实例化,出发依赖注入。
BeanFactory 定义了Spring IOC容器的基本功能规范,是Spring IOC容器所应遵循的最底层和最基本的编程规范。BeanFactory接口定义了几个getBean()方法,就是用户向IOC容器索取管理的Bean方法,我们通过分析其子类的具体实现,理解Spring IOC容器在用户索取Bean时如何完成依赖注入。
SimpleAliasRegistry
DefaultSingletonBeanRegistry
FactoryBeanRegistrySupport
AbstractBeanFactory
AbstractAutowireCapableBeanFactory
DefaultListableBeanFactory
在BeanFactory中我们可以看到getBean(string..)方法,但它具体实现在AbstractBeanFactory中
BeanDefinitionValueResolver SimpleInstantiationStrategy AbstractAutowireCapableBeanFactory AbstractBeanFactory Main BeanDefinitionValueResolver SimpleInstantiationStrategy AbstractAutowireCapableBeanFactory AbstractBeanFactory Main getBeanFactory() 1 doGetBean(name,requiredType,args,typeCheckOnly) 2 createBean(beanname..) 3 doCreateBean(beanname,..) 4 createBeanInstance(beanname,mdb,args) 5 instantiationBean(beanname,mbd) 6 instantiate(bd,beanname,owner) 7 populateBean(beanname,mbd,instanceWrapper) 8 applyPropertyValues(beanname,mbd,bw,pvs) 9 resolveValueIfNecessary(pv, originalValue) 10 寻找获取Bean的入口 AbstractBeanFactory的getBean()相关方法的源码如下:
// 真正实现向IOC容器获取Bean的功能,也是出发依赖注入功能的地方
@SuppressWarnings("unchecked")
protected <T> T doGetBean(final String name, @Nullable final Class<T> requiredType,
@Nullable final Object[] args, boolean typeCheckOnly) throws BeansException {
// 根据指定的名称获取被管理Bean的名称,剥离指定名称中对容器的相关依赖
// 如果指定的是别名,将别名转换为规范的Bean名称
final String beanName = transformedBeanName(name);
Object bean;
// 先从缓存中取是否已经有被创建过的单态类型的Bean
// 对于单例模式的Bean整个IOC容器中只创建一次,不需要重复创建
// Eagerly check singleton cache for manually registered singletons.
Object sharedInstance = getSingleton(beanName);
// IOC容器创建单例模式Bean实例对象
if (sharedInstance != null && args == null) {
if (logger.isDebugEnabled()) {
// 如果指定名称的Bean在容器中已有单例模式的Bean被创建
// 直接返回已经创建的Bean
if (isSingletonCurrentlyInCreation(beanName)) {
logger.debug("Returning eagerly cached instance of singleton bean '" + beanName +
"' that is not fully initialized yet - a consequence of a circular reference");
}
else {
logger.debug("Returning cached instance of singleton bean '" + beanName + "'");
}
}
bean = getObjectForBeanInstance(sharedInstance, name, beanName, null);
}
else {
// Fail if we're already creating this bean instance:
// We're assumably within a circular reference.
// 缓存没有正在创建的单例模式bean
// 缓存中已经有已经创建的原型模式Bean
// 但是由于循环引用的问题导致实例化对象失败
if (isPrototypeCurrentlyInCreation(beanName)) {
throw new BeanCurrentlyInCreationException(beanName);
}
// Check if bean definition exists in this factory.
// 对IOC容器中是否存在指定名称的BeanDefinition进行检查,首先检查是否
// 能在当前的BeanFactory中获取所需要的bean,如果不能则委托当前容器的
// 父级容器中查找,如果还是找不到则沿着容器的继承体向父级容器查找
BeanFactory parentBeanFactory = getParentBeanFactory();
// 当前容器的父级容器存在,且当前容器中不存在指定名称的bean
if (parentBeanFactory != null && !containsBeanDefinition(beanName)) {
// 解析指定bean名称的原始名称
// Not found -> check parent.
String nameToLookup = originalBeanName(name);
if (parentBeanFactory instanceof AbstractBeanFactory) {
return ((AbstractBeanFactory) parentBeanFactory).doGetBean(
nameToLookup, requiredType, args, typeCheckOnly);
}
else if (args != null) {
// Delegation to parent with explicit args.
// 委派父级容器根据指定名称和现实的参数查找
return (T) parentBeanFactory.getBean(nameToLookup, args);
}
else {
// No args -> delegate to standard getBean method.
// 委派父级容器根据指定名称和类型查找
return parentBeanFactory.getBean(nameToLookup, requiredType);
}
}
// 创建的Bean是否需要进行类型验证,一般不需要
if (!typeCheckOnly) {
// 向容器标记指定的bean已经被创建
markBeanAsCreated(beanName);
}
try {
// 根据指定bean名称获取其父级的bean定义
// 主要解决bean继承时子类合并父类公共属性问题。
final RootBeanDefinition mbd = getMergedLocalBeanDefinition(beanName);
checkMergedBeanDefinition(mbd, beanName, args);
// Guarantee initialization of beans that the current bean depends on.
// 获取当前Bean所有依赖Bean名称
String[] dependsOn = mbd.getDependsOn();
// 如果当前Bean有依赖bean
if (dependsOn != null) {
for (String dep : dependsOn) {
if (isDependent(beanName, dep)) {
throw new BeanCreationException(mbd.getResourceDescription(), beanName,
"Circular depends-on relationship between '" + beanName + "' and '" + dep + "'");
}
// 递归调用getBean方法,获取当前Bean的依赖Bean
registerDependentBean(dep, beanName);
// 把被依赖Bean注册给当前依赖的Bean
getBean(dep);
}
}
// Create bean instance.
// 创建单例模式Bean的实例对象
if (mbd.isSingleton()) {
// 这是使用了一个匿名内部类,创建bean实例对象,并且注册给所依赖的对象
sharedInstance = getSingleton(beanName, () -> {
try {
// 创建一个指定Bean实力对象,如果父级继承,则合并子类和父类的定义
return createBean(beanName, mbd, args);
}
catch (BeansException ex) {
// Explicitly remove instance from singleton cache: It might have been put there
// eagerly by the creation process, to allow for circular reference resolution.
// Also remove any beans that received a temporary reference to the bean.
// 显式从容器单例模式bean缓存中清除实例对象
destroySingleton(beanName);
throw ex;
}
});
// 获取给定Bean的实例对象
bean = getObjectForBeanInstance(sharedInstance, name, beanName, mbd);
}
// IOC容器创建原型模式bean实力对象
else if (mbd.isPrototype()) {
// It's a prototype -> create a new instance.
// 原型模式是每次都会创建一个新的对象
Object prototypeInstance = null;
try {
// 回调beforePrototypeCreation方法,默认功能是注册当前创建的原型对象
beforePrototypeCreation(beanName);
// 创建指定Bean对象实例
prototypeInstance = createBean(beanName, mbd, args);
}
finally {
// 回调afterPrototypeCreation方法,默认的功能告诉IOC容器指定Bean的原型对象不再创建
afterPrototypeCreation(beanName);
}
// 获取给定Bean的实例对象
bean = getObjectForBeanInstance(prototypeInstance, name, beanName, mbd);
}
// 要创建的Bean既不是单例模式,也不是原型模式,则根据Bean定义资源中
// 配置的生命周期范围,选择实例化Bean的合适方法,这种在web应用程序中
// 比较常用,如:request、session、application等生命周期
else {
String scopeName = mbd.getScope();
final Scope scope = this.scopes.get(scopeName);
// Bean定义资源中没有配置生命周期范围,则Bean定义不合法
if (scope == null) {
throw new IllegalStateException("No Scope registered for scope name '" + scopeName + "'");
}
try {
// 这里又使用了一个匿名内部类,获取一个指定生命周期范围的实力
Object scopedInstance = scope.get(beanName, () -> {
beforePrototypeCreation(beanName);
try {
return createBean(beanName, mbd, args);
}
finally {
afterPrototypeCreation(beanName);
}
});
// 获取给定的实例对象
bean = getObjectForBeanInstance(scopedInstance, name, beanName, mbd);
}
catch (IllegalStateException ex) {
throw new BeanCreationException(beanName,
"Scope '" + scopeName + "' is not active for the current thread; consider " +
"defining a scoped proxy for this bean if you intend to refer to it from a singleton",
ex);
}
}
}
catch (BeansException ex) {
cleanupAfterBeanCreationFailure(beanName);
throw ex;
}
}
// Check if required type matches the type of the actual bean instance.
// 对创建的Bean实例对象进行类型检查
if (requiredType != null && !requiredType.isInstance(bean)) {
try {
T convertedBean = getTypeConverter().convertIfNecessary(bean, requiredType);
if (convertedBean == null) {
throw new BeanNotOfRequiredTypeException(name, requiredType, bean.getClass());
}
return convertedBean;
}
catch (TypeMismatchException ex) {
if (logger.isDebugEnabled()) {
logger.debug("Failed to convert bean '" + name + "' to required type '" +
ClassUtils.getQualifiedName(requiredType) + "'", ex);
}
throw new BeanNotOfRequiredTypeException(name, requiredType, bean.getClass());
}
}
return (T) bean;
}
通过上面对IOC容器获取Bean方法的分析,我们可以看出在Spring 中,如果Bean定义的单例模式,则容器创建之前先在缓存中查找,以确保整个容器只存在一个实例对象。如果Bean定义的原型模式prototype,则容器每次都会创建一个新的实例对象。除此之外,Bean定义还可以扩展为指定其生命周期范围。
上面的源码只是定义了根据Bean定义的模式,采取的不同创建Bean实力对象的策略,具体的Bean实例对象的创建过程由实现ObjectFactory接口的匿名内部类的createBean()方法完成,ObjectFactory使用委派模式,具体的Bean实例创建过程交由实现类AbstractAutowireCapableBeanFactory完成,我们继续分析AbstractAutowireCapableBeanFactory的createBean()方法的源码,理解其创建Bean实力的具体实现过程。
开始实例化 AbstractAutowireCapableBeanFactory类实现了ObjectFactory接口,创建容器指定的Bean实力对象,同时还对创建的Bean实例对象进行初始化处理。其创建Bean实例对象的方法源码如下:
// 真正创建Bean的方法
protected Object doCreateBean(final String beanName, final RootBeanDefinition mbd, final @Nullable Object[] args)
throws BeanCreationException {
// Instantiate the bean.
// 封装被创建的Bean的对象
BeanWrapper instanceWrapper = null;
if (mbd.isSingleton()) {
instanceWrapper = this.factoryBeanInstanceCache.remove(beanName);
}
if (instanceWrapper == null) {
instanceWrapper = createBeanInstance(beanName, mbd, args);
}
final Object bean = instanceWrapper.getWrappedInstance();
// 获取实例化对象的类型
Class<?> beanType = instanceWrapper.getWrappedClass();
if (beanType != NullBean.class) {
mbd.resolvedTargetType = beanType;
}
// Allow post-processors to modify the merged bean definition.
// 调用PostProccessor后置处理器
synchronized (mbd.postProcessingLock) {
if (!mbd.postProcessed) {
try {
applyMergedBeanDefinitionPostProcessors(mbd, beanType, beanName);
}
catch (Throwable ex) {
throw new BeanCreationException(mbd.getResourceDescription(), beanName,
"Post-processing of merged bean definition failed", ex);
}
mbd.postProcessed = true;
}
}
// Eagerly cache singletons to be able to resolve circular references
// even when triggered by lifecycle interfaces like BeanFactoryAware.
// 向容器中缓存单例模式的Bean对象,以防止循环引用
boolean earlySingletonExposure = (mbd.isSingleton() && this.allowCircularReferences &&
isSingletonCurrentlyInCreation(beanName));
if (earlySingletonExposure) {
if (logger.isDebugEnabled()) {
logger.debug("Eagerly caching bean '" + beanName +
"' to allow for resolving potential circular references");
}
// 这里是一个匿名内部类,为了防止循环引用,尽早持有对象来的引用
addSingletonFactory(beanName, () -> getEarlyBeanReference(beanName, mbd, bean));
}
// Initialize the bean instance.
// Bean对象的初始化,依赖注入在此出发
// 这个exposedObject在初始化完成之后返回作为依赖注入完成后的Bean
Object exposedObject = bean;
try {
// 将Bean实例对象封装,并且Bean定义中配置的属性值赋值
populateBean(beanName, mbd, instanceWrapper);
exposedObject = initializeBean(beanName, exposedObject, mbd);
}
catch (Throwable ex) {
if (ex instanceof BeanCreationException && beanName.equals(((BeanCreationException) ex).getBeanName())) {
throw (BeanCreationException) ex;
}
else {
throw new BeanCreationException(
mbd.getResourceDescription(), beanName, "Initialization of bean failed", ex);
}
}
if (earlySingletonExposure) {
// 获取指定名称的已经注册的单例模式bean对象
Object earlySingletonReference = getSingleton(beanName, false);
if (earlySingletonReference != null) {
//根据名称获取的已经注册的bean和正在实例化的bean是同一个
if (exposedObject == bean) {
// 当前实例化的bean初始化完成
exposedObject = earlySingletonReference;
}
// 当前bean以来其他bean,并且当发生循环引用时不允许新创建实例对象
else if (!this.allowRawInjectionDespiteWrapping && hasDependentBean(beanName)) {
String[] dependentBeans = getDependentBeans(beanName);
Set<String> actualDependentBeans = new LinkedHashSet<>(dependentBeans.length);
// 获取当前bean所以来的其他bean
for (String dependentBean : dependentBeans) {
// 对依赖的bean进行类型检查
if (!removeSingletonIfCreatedForTypeCheckOnly(dependentBean)) {
actualDependentBeans.add(dependentBean);
}
}
if (!actualDependentBeans.isEmpty()) {
throw new BeanCurrentlyInCreationException(beanName,
"Bean with name '" + beanName + "' has been injected into other beans [" +
StringUtils.collectionToCommaDelimitedString(actualDependentBeans) +
"] in its raw version as part of a circular reference, but has eventually been " +
"wrapped. This means that said other beans do not use the final version of the " +
"bean. This is often the result of over-eager type matching - consider using " +
"'getBeanNamesOfType' with the 'allowEagerInit' flag turned off, for example.");
}
}
}
}
// Register bean as disposable.
// 注册完成以来注入的bean
try {
registerDisposableBeanIfNecessary(beanName, bean, mbd);
}
catch (BeanDefinitionValidationException ex) {
throw new BeanCreationException(
mbd.getResourceDescription(), beanName, "Invalid destruction signature", ex);
}
return exposedObject;
}
通过上面的源码注释,我们看到具体的以来注释实现其实就在以上两个方法中:
createBeanInstance()方法,生成bean所包含的Java对象实例。
populateBean()方法,对bean属性的依赖注入进行处理。
选择bean实例化策略 在createBeanInstance()方法中,根据指定的初始化策略,使用简单工厂、工厂方法或者如同其的自动装配特性生成Java实例对象,创建对象的源码如下:
// 创建bean的实例对象
protected BeanWrapper createBeanInstance(String beanName, RootBeanDefinition mbd, @Nullable Object[] args) {
// Make sure bean class is actually resolved at this point.
// 检查确认bean是可实例化
Class<?> beanClass = resolveBeanClass(mbd, beanName);
if (beanClass != null && !Modifier.isPublic(beanClass.getModifiers()) && !mbd.isNonPublicAccessAllowed()) {
throw new BeanCreationException(mbd.getResourceDescription(), beanName,
"Bean class isn't public, and non-public access not allowed: " + beanClass.getName());
}
Supplier<?> instanceSupplier = mbd.getInstanceSupplier();
if (instanceSupplier != null) {
return obtainFromSupplier(instanceSupplier, beanName);
}
if (mbd.getFactoryMethodName() != null) {
// 调用工厂方法实例化
return instantiateUsingFactoryMethod(beanName, mbd, args);
}
// Shortcut when re-creating the same bean...
// 使用容器的自动装配方法进行实例化
boolean resolved = false;
boolean autowireNecessary = false;
if (args == null) {
synchronized (mbd.constructorArgumentLock) {
if (mbd.resolvedConstructorOrFactoryMethod != null) {
resolved = true;
autowireNecessary = mbd.constructorArgumentsResolved;
}
}
}
if (resolved) {
if (autowireNecessary) {
// 配置自动装配属性,使用容器的自动装配实例化
// 容器的自动装配是根据参数类型匹配bean的构造方法
return autowireConstructor(beanName, mbd, null, null);
}
else {
// 使用默认的无参构造方法实例化
return instantiateBean(beanName, mbd);
}
}
// Need to determine the constructor...
// 使用bean的构造方法新型实例化
Constructor<?>[] ctors = determineConstructorsFromBeanPostProcessors(beanClass, beanName);
if (ctors != null ||
mbd.getResolvedAutowireMode() == RootBeanDefinition.AUTOWIRE_CONSTRUCTOR ||
mbd.hasConstructorArgumentValues() || !ObjectUtils.isEmpty(args)) {
// 使用容器的自动装配特性,调用配置的构造方法实例化
return autowireConstructor(beanName, mbd, ctors, args);
}
// No special handling: simply use no-arg constructor.
// 使用默认的无参构造方法实例化
return instantiateBean(beanName, mbd);
}
// 使用默认的无参构造方法实例化bean对象
protected BeanWrapper instantiateBean(final String beanName, final RootBeanDefinition mbd) {
try {
Object beanInstance;
final BeanFactory parent = this;
// 获取系统的安全管理接口,jdk标准的安全管理节API
if (System.getSecurityManager() != null) {
// 这是是一个匿名内置类,根据实例化策略创建实例对象
beanInstance = AccessController.doPrivileged((PrivilegedAction<Object>) () ->
getInstantiationStrategy().instantiate(mbd, beanName, parent),
getAccessControlContext());
}
else {
// 将实例化的对象封装起来
beanInstance = getInstantiationStrategy().instantiate(mbd, beanName, parent);
}
BeanWrapper bw = new BeanWrapperImpl(beanInstance);
initBeanWrapper(bw);
return bw;
}
catch (Throwable ex) {
throw new BeanCreationException(
mbd.getResourceDescription(), beanName, "Instantiation of bean failed", ex);
}
}
经过对上面的代码分析,我们可以看出,对使用工厂方法和自动装配特性的bean的实例化相当比较清楚,调用相应的工厂方法或者参数匹配的构造方法即可完成实例化对象的工作,但是对于我们最常使用的默认午餐构造方法就需要使用相应的初始化策略(JDK的反射机制或者CGLIB)来进行初始化,在方法getInstantiationStrategy().instantiate()中具体实现类使用出事策略实例化对象。
### 执行Bean实例化
在使用默认的无参构造方法常见bean的实例化对象时,方法getInstantiationStrategy().instantiate()调用了SimpleInstantiationStrategy类中的实例化bean的方法,其源码如下:
// 使用初始化策略实例化bean对象
@Override
public Object instantiate(RootBeanDefinition bd, @Nullable String beanName, BeanFactory owner) {
// Don't override the class with CGLIB if no overrides.
// 如果bean定义中没有方法覆盖,测就不需要CGLIB弗雷类的方法
if (!bd.hasMethodOverrides()) {
Constructor<?> constructorToUse;
synchronized (bd.constructorArgumentLock) {
// 获取对象的构造方法或工厂方法
constructorToUse = (Constructor<?>) bd.resolvedConstructorOrFactoryMethod;
// 如果没有构造方法且没有工厂方法
if (constructorToUse == null) {
// 使用JDK的反射机制,判断要实例化的bean是否是接口
final Class<?> clazz = bd.getBeanClass();
if (clazz.isInterface()) {
throw new BeanInstantiationException(clazz, "Specified class is an interface");
}
try {
if (System.getSecurityManager() != null) {
// 这里是一个匿名内置类,使用反射机制获取bean的构造方法
constructorToUse = AccessController.doPrivileged(
(PrivilegedExceptionAction<Constructor<?>>) () -> clazz.getDeclaredConstructor());
}
else {
constructorToUse = clazz.getDeclaredConstructor();
}
bd.resolvedConstructorOrFactoryMethod = constructorToUse;
}
catch (Throwable ex) {
throw new BeanInstantiationException(clazz, "No default constructor found", ex);
}
}
}
// 使用beanuits实例化,通过反射机制调用构造方法.newInstance(arg)来进行实例化
return BeanUtils.instantiateClass(constructorToUse);
}
else {
// Must generate CGLIB subclass.
// 使用CGLIB来实例化对象
return instantiateWithMethodInjection(bd, beanName, owner);
}
}
通过上面代码的分析,我们看到了如果bean有方法被覆盖了,则使用jdk的反射机制进行实例化,否则,使用CGLIB进行实例化。
instantiateWithMethodInjection()方法调用SimpleInstantiationStrategy类的子类CGLibSubclassingInstantiationStrategy使用CGLib来进行初始化,其源码如下:
// 使用CGLib进行bean对象实例化
public Object instantiate(@Nullable Constructor<?> ctor, @Nullable Object... args) {
// 创建代理子类
Class<?> subclass = createEnhancedSubclass(this.beanDefinition);
Object instance;
if (ctor == null) {
instance = BeanUtils.instantiateClass(subclass);
}
else {
try {
Constructor<?> enhancedSubclassConstructor = subclass.getConstructor(ctor.getParameterTypes());
instance = enhancedSubclassConstructor.newInstance(args);
}
catch (Exception ex) {
throw new BeanInstantiationException(this.beanDefinition.getBeanClass(),
"Failed to invoke constructor for CGLIB enhanced subclass [" + subclass.getName() + "]", ex);
}
}
// SPR-10785: set callbacks directly on the instance instead of in the
// enhanced class (via the Enhancer) in order to avoid memory leaks.
Factory factory = (Factory) instance;
factory.setCallbacks(new Callback[] {NoOp.INSTANCE,
new LookupOverrideMethodInterceptor(this.beanDefinition, this.owner),
new ReplaceOverrideMethodInterceptor(this.beanDefinition, this.owner)});
return instance;
}
private Class<?> createEnhancedSubclass(RootBeanDefinition beanDefinition) {
// CGLib中的类
Enhancer enhancer = new Enhancer();
// 将Bean本身作为基类
enhancer.setSuperclass(beanDefinition.getBeanClass());
enhancer.setNamingPolicy(SpringNamingPolicy.INSTANCE);
if (this.owner instanceof ConfigurableBeanFactory) {
ClassLoader cl = ((ConfigurableBeanFactory) this.owner).getBeanClassLoader();
enhancer.setStrategy(new ClassLoaderAwareGeneratorStrategy(cl));
}
enhancer.setCallbackFilter(new MethodOverrideCallbackFilter(beanDefinition));
enhancer.setCallbackTypes(CALLBACK_TYPES);
// 使用CGLib的createCLass方法生成实例对象
return enhancer.createClass();
}
}
CGLib是一个常用的字节码生成器的类库,他提供了一系列API实现java字节码的生成和转换功能。我们在学习jdk的动态代理时都知道,JDK的动态代理只能针对接口,如果一个类没有实现任何接口,要对其进行动态代理只能使用CGLib。
准备依赖注入 在前面的分析中我们已经了解了Bean的依赖注入主要分为两个步骤,首先调用createBeanInstance()方法生成Bean所包含的Java对象实例。然后,调用populateBean()方法,对bean属性的依赖注入进行处理。 上面已经分析了容器初始化生成bean所包含的Java实例对象的过程,现在我们继续分析生成对象后,Spring IOC容器是如何将BEan的属性依赖关系注入Bean实例对象中设置好的,回到AbstractAutowireCapableBeanFactory的populateBean()方法,对属性以来注入的代码如下:
// 解析并注入以来属性的过程
protected void applyPropertyValues(String beanName, BeanDefinition mbd, BeanWrapper bw, PropertyValues pvs) {
if (pvs.isEmpty()) {
return;
}
// 封装属性值
MutablePropertyValues mpvs = null;
List<PropertyValue> original;
if (System.getSecurityManager() != null) {
if (bw instanceof BeanWrapperImpl) {
// 设置上下文,JDK安全机制
((BeanWrapperImpl) bw).setSecurityContext(getAccessControlContext());
}
}
if (pvs instanceof MutablePropertyValues) {
mpvs = (MutablePropertyValues) pvs;
// 属性值已经转换
if (mpvs.isConverted()) {
// Shortcut: use the pre-converted values as-is.
try {
// 为实例化对象设置属性值
bw.setPropertyValues(mpvs);
return;
}
catch (BeansException ex) {
throw new BeanCreationException(
mbd.getResourceDescription(), beanName, "Error setting property values", ex);
}
}
// 获取属性值对象的原始类型值
original = mpvs.getPropertyValueList();
}
else {
original = Arrays.asList(pvs.getPropertyValues());
}
// 获取用户自定义的类型转换
TypeConverter converter = getCustomTypeConverter();
if (converter == null) {
converter = bw;
}
// 创建一个bean定义属性值解析器,将bean定义中的属性值解析为bean实例对象的实例值
BeanDefinitionValueResolver valueResolver = new BeanDefinitionValueResolver(this, beanName, mbd, converter);
// Create a deep copy, resolving any references for values.
// 为属性值的解析值创建一个拷贝,将拷贝的数据注入到实例对象中
List<PropertyValue> deepCopy = new ArrayList<>(original.size());
boolean resolveNecessary = false;
for (PropertyValue pv : original) {
// 属性值不需要转换
if (pv.isConverted()) {
deepCopy.add(pv);
}
// 属性值需要转换
else {
String propertyName = pv.getName();
// 原始的属性值,即转换之前的属性值
Object originalValue = pv.getValue();
// 转换属性值,例如将引用转换为IOC容器中实例化对象引用
Object resolvedValue = valueResolver.resolveValueIfNecessary(pv, originalValue);
// 转换之后的属性值
Object convertedValue = resolvedValue;
// 属性值是否可以转换
boolean convertible = bw.isWritableProperty(propertyName) &&
!PropertyAccessorUtils.isNestedOrIndexedProperty(propertyName);
if (convertible) {
// 使用用户定义的类型转换器转换属性值
convertedValue = convertForProperty(resolvedValue, propertyName, bw, converter);
}
// Possibly store converted value in merged bean definition,
// in order to avoid re-conversion for every created bean instance.
// 存储转换后的属性值,避免每次属性注入时的转换工作
if (resolvedValue == originalValue) {
if (convertible) {
// 设置属性转换之后的值
pv.setConvertedValue(convertedValue);
}
deepCopy.add(pv);
}
// 属性是可转换的,且属性原始之时字符串类型,且属性的原始类型值不是
// 动态生成的字符串,且属性的原始之不是集合或者数组类型
else if (convertible && originalValue instanceof TypedStringValue &&
!((TypedStringValue) originalValue).isDynamic() &&
!(convertedValue instanceof Collection || ObjectUtils.isArray(convertedValue))) {
pv.setConvertedValue(convertedValue);
// 重新封装属性的值
deepCopy.add(pv);
}
else {
resolveNecessary = true;
deepCopy.add(new PropertyValue(pv, convertedValue));
}
}
}
if (mpvs != null && !resolveNecessary) {
// 标记属性值已经转换过
mpvs.setConverted();
}
// Set our (possibly massaged) deep copy.
// 进行属性依赖注入
try {
bw.setPropertyValues(new MutablePropertyValues(deepCopy));
}
catch (BeansException ex) {
throw new BeanCreationException(
mbd.getResourceDescription(), beanName, "Error setting property values", ex);
}
}
分析上述代码,我们可以看出,对属性的注入过程分为以下两种情况:
属性值类型不需要强制转换是,不需要解析属性值,直接准备进行以来注入。
属性值需要进行类型强制转换是,如对其他对象的引用等,首先需要解析属性值,然后对解后的属性值进行依赖注入。 对属性值的解析是在BeanDefinitionValueResolver类中的resolveValueIfNecessary()方法中进行的,对属性值的玉床的注入是通过bw.setPropertyValues()方法实现的,在分析属性值的依赖注入之前,我们先分析一下对象属性值的解析规则。
解析属性注入规则 当容器对属性进行以来注入时 ,如果发现属性值需要进行类型转换,如属性值是容器中另外一个bean实例对象的引用,则容器首先需要根据属性值解析出所引用的对象,然后才能将引用对象注入到目标实例对俩的属性上去,对属性进行解析的由resolveValueIfNecessary()方法实现,其源码如下:
// 解析属性值,对注入类型进行转换
@Nullable
public Object resolveValueIfNecessary(Object argName, @Nullable Object value) {
// We must check each value to see whether it requires a runtime reference
// to another bean to be resolved.
// 对引用类型的属性进行解析
if (value instanceof RuntimeBeanReference) {
RuntimeBeanReference ref = (RuntimeBeanReference) value;
// 调用引用类型属性的解析方法
return resolveReference(argName, ref);
}
// 对属性值是引用容器中另一个bean的名称的解析
else if (value instanceof RuntimeBeanNameReference) {
String refName = ((RuntimeBeanNameReference) value).getBeanName();
refName = String.valueOf(doEvaluate(refName));
// 从容器中获取指定名称bean
if (!this.beanFactory.containsBean(refName)) {
throw new BeanDefinitionStoreException(
"Invalid bean name '" + refName + "' in bean reference for " + argName);
}
return refName;
}
// 对bean 类型的解析,主要是bean中的内部类
else if (value instanceof BeanDefinitionHolder) {
// Resolve BeanDefinitionHolder: contains BeanDefinition with name and aliases.
BeanDefinitionHolder bdHolder = (BeanDefinitionHolder) value;
return resolveInnerBean(argName, bdHolder.getBeanName(), bdHolder.getBeanDefinition());
}
else if (value instanceof BeanDefinition) {
// Resolve plain BeanDefinition, without contained name: use dummy name.
BeanDefinition bd = (BeanDefinition) value;
String innerBeanName = "(inner bean)" + BeanFactoryUtils.GENERATED_BEAN_NAME_SEPARATOR +
ObjectUtils.getIdentityHexString(bd);
return resolveInnerBean(argName, innerBeanName, bd);
}
// 对集合数组类型的属性解析
else if (value instanceof ManagedArray) {
// May need to resolve contained runtime references.
ManagedArray array = (ManagedArray) value;
// 获取数组的类型
Class<?> elementType = array.resolvedElementType;
if (elementType == null) {
// 获取数组元素的类型
String elementTypeName = array.getElementTypeName();
if (StringUtils.hasText(elementTypeName)) {
try {
// 使用反射机制创建指定类型的对象
elementType = ClassUtils.forName(elementTypeName, this.beanFactory.getBeanClassLoader());
array.resolvedElementType = elementType;
}
catch (Throwable ex) {
// Improve the message by showing the context.
throw new BeanCreationException(
this.beanDefinition.getResourceDescription(), this.beanName,
"Error resolving array type for " + argName, ex);
}
}
// 没有获取到数组的类型,也没有获取到数组元素的类型
// 则直接设置数组的类型为Object
else {
elementType = Object.class;
}
}
// 创建指定类型的数组
return resolveManagedArray(argName, (List<?>) value, elementType);
}
// 解析list类型的属性值
else if (value instanceof ManagedList) {
// May need to resolve contained runtime references.
return resolveManagedList(argName, (List<?>) value);
}
// 解析set类型的属性值
else if (value instanceof ManagedSet) {
// May need to resolve contained runtime references.
return resolveManagedSet(argName, (Set<?>) value);
}
// 解析map类型的属性值
else if (value instanceof ManagedMap) {
// May need to resolve contained runtime references.
return resolveManagedMap(argName, (Map<?, ?>) value);
}
// 解析props类型的属性值,props其实就是key和value均为字符串的map
else if (value instanceof ManagedProperties) {
Properties original = (Properties) value;
// 创建一个拷贝,用于作为解析后的返回值
Properties copy = new Properties();
original.forEach((propKey, propValue) -> {
if (propKey instanceof TypedStringValue) {
propKey = evaluate((TypedStringValue) propKey);
}
if (propValue instanceof TypedStringValue) {
propValue = evaluate((TypedStringValue) propValue);
}
if (propKey == null || propValue == null) {
throw new BeanCreationException(
this.beanDefinition.getResourceDescription(), this.beanName,
"Error converting Properties key/value pair for " + argName + ": resolved to null");
}
copy.put(propKey, propValue);
});
return copy;
}
// 解析字符串类型的属性值
else if (value instanceof TypedStringValue) {
// Convert value to target type here.
TypedStringValue typedStringValue = (TypedStringValue) value;
Object valueObject = evaluate(typedStringValue);
try {
// 获取属性的目标类型
Class<?> resolvedTargetType = resolveTargetType(typedStringValue);
if (resolvedTargetType != null) {
// 对目标类型的属性进行解析,递归调用
return this.typeConverter.convertIfNecessary(valueObject, resolvedTargetType);
}
// 没有获取到属性的目标对象,则按Object类型返回
else {
return valueObject;
}
}
catch (Throwable ex) {
// Improve the message by showing the context.
throw new BeanCreationException(
this.beanDefinition.getResourceDescription(), this.beanName,
"Error converting typed String value for " + argName, ex);
}
}
else if (value instanceof NullBean) {
return null;
}
else {
return evaluate(value);
}
}
// 解析引用类型的属性值
@Nullable
private Object resolveReference(Object argName, RuntimeBeanReference ref) {
try {
Object bean;
// 获取引用类型的bean名称
String refName = ref.getBeanName();
refName = String.valueOf(doEvaluate(refName));
// 如果引用的对象在弗雷容器中,则从弗雷容器中获取指定的引用对象
if (ref.isToParent()) {
if (this.beanFactory.getParentBeanFactory() == null) {
throw new BeanCreationException(
this.beanDefinition.getResourceDescription(), this.beanName,
"Can't resolve reference to bean '" + refName +
"' in parent factory: no parent factory available");
}
bean = this.beanFactory.getParentBeanFactory().getBean(refName);
}
// 从当前的容器中获取指定的引用bean对象,如果指定的bean没有实例化
// 则会递归出发引用bean的初始化和依赖注入
else {
bean = this.beanFactory.getBean(refName);
// 将当前实例化对象的以来引用对象
this.beanFactory.registerDependentBean(refName, this.beanName);
}
if (bean instanceof NullBean) {
bean = null;
}
return bean;
}
catch (BeansException ex) {
throw new BeanCreationException(
this.beanDefinition.getResourceDescription(), this.beanName,
"Cannot resolve reference to bean '" + ref.getBeanName() + "' while setting " + argName, ex);
}
}
// 解析array类型的属性
private Object resolveManagedArray(Object argName, List<?> ml, Class<?> elementType) {
// 创建一个指定类型的数组,用于存储和返回解析后的数组
Object resolved = Array.newInstance(elementType, ml.size());
for (int i = 0; i < ml.size(); i++) {
// 递归解析array的每一个元素,并将解析后的值设置到resolved数组中,索引为i
Array.set(resolved, i,
resolveValueIfNecessary(new KeyedArgName(argName, i), ml.get(i)));
}
return resolved;
}
通过上面的代码分析,我们明白spring是如果引用类型,内部类以及集合类型等属性解析的,属性值解析完成后就可以进行依赖注入,依赖注入的过程就是bean对象实例设置到它依赖的bean对象属性上去。而真正的以来注入是通过bw.setPropertyValues()方法实现的,该方法也使用了委托模式,在beanWrapper接口中至少定义了方法声明,以来注入的具体实现交由其实现类BeanWrapperImpl来完成,下面我们就分析BeanWrapperImpl中依赖注入相关的源码。
注入赋值 BeanWrapperImpl类主要是对容器中完成初始化的bean实例对象进行属性的依赖注入,即把bean对象设置到它所依赖的另外一个bean的属性中去。然而,BeanWrapperImpl中的注入人方法实际上由AbstractNestablePropertyAccessor来实现的,其相关源码如下:
// 实现属性依赖注入功能
protected void setPropertyValue(PropertyTokenHolder tokens, PropertyValue pv) throws BeansException {
if (tokens.keys != null) {
processKeyedProperty(tokens, pv);
}
else {
processLocalProperty(tokens, pv);
}
}
// 实现属性依赖注入功能
@SuppressWarnings("unchecked")
private void processKeyedProperty(PropertyTokenHolder tokens, PropertyValue pv) {
// 调用属性的getter(readMethod)方法,获取属性值
Object propValue = getPropertyHoldingValue(tokens);
PropertyHandler ph = getLocalPropertyHandler(tokens.actualName);
if (ph == null) {
throw new InvalidPropertyException(
getRootClass(), this.nestedPath + tokens.actualName, "No property handler found");
}
Assert.state(tokens.keys != null, "No token keys");
String lastKey = tokens.keys[tokens.keys.length - 1];
// 注入array类型的属性值
if (propValue.getClass().isArray()) {
Class<?> requiredType = propValue.getClass().getComponentType();
int arrayIndex = Integer.parseInt(lastKey);
Object oldValue = null;
try {
if (isExtractOldValueForEditor() && arrayIndex < Array.getLength(propValue)) {
oldValue = Array.get(propValue, arrayIndex);
}
Object convertedValue = convertIfNecessary(tokens.canonicalName, oldValue, pv.getValue(),
requiredType, ph.nested(tokens.keys.length));
// 获取集合类型属性的长度
int length = Array.getLength(propValue);
if (arrayIndex >= length && arrayIndex < this.autoGrowCollectionLimit) {
Class<?> componentType = propValue.getClass().getComponentType();
Object newArray = Array.newInstance(componentType, arrayIndex + 1);
System.arraycopy(propValue, 0, newArray, 0, length);
setPropertyValue(tokens.actualName, newArray);
// 调用属性的getter(readMethod) 方法,获取属性的值
propValue = getPropertyValue(tokens.actualName);
}
// 将属性的值赋值给数组中的元素
Array.set(propValue, arrayIndex, convertedValue);
}
catch (IndexOutOfBoundsException ex) {
throw new InvalidPropertyException(getRootClass(), this.nestedPath + tokens.canonicalName,
"Invalid array index in property path '" + tokens.canonicalName + "'", ex);
}
}
// 注入List类型的属性值
else if (propValue instanceof List) {
// 获取list集合的类型
Class<?> requiredType = ph.getCollectionType(tokens.keys.length);
List<Object> list = (List<Object>) propValue;
// 获取list集合的size
int index = Integer.parseInt(lastKey);
Object oldValue = null;
if (isExtractOldValueForEditor() && index < list.size()) {
oldValue = list.get(index);
}
// 获取list解析后的属性值
Object convertedValue = convertIfNecessary(tokens.canonicalName, oldValue, pv.getValue(),
requiredType, ph.nested(tokens.keys.length));
int size = list.size();
// 如果list的长度大于属性值的长度,则多余的元素赋值为null
if (index >= size && index < this.autoGrowCollectionLimit) {
for (int i = size; i < index; i++) {
try {
list.add(null);
}
catch (NullPointerException ex) {
throw new InvalidPropertyException(getRootClass(), this.nestedPath + tokens.canonicalName,
"Cannot set element with index " + index + " in List of size " +
size + ", accessed using property path '" + tokens.canonicalName +
"': List does not support filling up gaps with null elements");
}
}
list.add(convertedValue);
}
else {
try {
// 将值添加到list中
list.set(index, convertedValue);
}
catch (IndexOutOfBoundsException ex) {
throw new InvalidPropertyException(getRootClass(), this.nestedPath + tokens.canonicalName,
"Invalid list index in property path '" + tokens.canonicalName + "'", ex);
}
}
}
// 注入map类型的属性值
else if (propValue instanceof Map) {
// 获取map集合key的类型
Class<?> mapKeyType = ph.getMapKeyType(tokens.keys.length);
// 获取map集合value的类型
Class<?> mapValueType = ph.getMapValueType(tokens.keys.length);
Map<Object, Object> map = (Map<Object, Object>) propValue;
// IMPORTANT: Do not pass full property name in here - property editors
// must not kick in for map keys but rather only for map values.
TypeDescriptor typeDescriptor = TypeDescriptor.valueOf(mapKeyType);
// 解析map类型属性key的值
Object convertedMapKey = convertIfNecessary(null, null, lastKey, mapKeyType, typeDescriptor);
Object oldValue = null;
if (isExtractOldValueForEditor()) {
oldValue = map.get(convertedMapKey);
}
// Pass full property name and old value in here, since we want full
// conversion ability for map values.
// 解析map类型属性value的值
Object convertedMapValue = convertIfNecessary(tokens.canonicalName, oldValue, pv.getValue(),
mapValueType, ph.nested(tokens.keys.length));
// 将解析后的key和value的值赋值给map集合属性
map.put(convertedMapKey, convertedMapValue);
}
else {
throw new InvalidPropertyException(getRootClass(), this.nestedPath + tokens.canonicalName,
"Property referenced in indexed property path '" + tokens.canonicalName +
"' is neither an array nor a List nor a Map; returned value was [" + propValue + "]");
}
}
private Object getPropertyHoldingValue(PropertyTokenHolder tokens) {
// Apply indexes and map keys: fetch value for all keys but the last one.
Assert.state(tokens.keys != null, "No token keys");
PropertyTokenHolder getterTokens = new PropertyTokenHolder(tokens.actualName);
getterTokens.canonicalName = tokens.canonicalName;
getterTokens.keys = new String[tokens.keys.length - 1];
System.arraycopy(tokens.keys, 0, getterTokens.keys, 0, tokens.keys.length - 1);
Object propValue;
try {
// 获取属性值
propValue = getPropertyValue(getterTokens);
}
catch (NotReadablePropertyException ex) {
throw new NotWritablePropertyException(getRootClass(), this.nestedPath + tokens.canonicalName,
"Cannot access indexed value in property referenced " +
"in indexed property path '" + tokens.canonicalName + "'", ex);
}
if (propValue == null) {
// null map value case
if (isAutoGrowNestedPaths()) {
int lastKeyIndex = tokens.canonicalName.lastIndexOf('[');
getterTokens.canonicalName = tokens.canonicalName.substring(0, lastKeyIndex);
propValue = setDefaultValue(getterTokens);
}
else {
throw new NullValueInNestedPathException(getRootClass(), this.nestedPath + tokens.canonicalName,
"Cannot access indexed value in property referenced " +
"in indexed property path '" + tokens.canonicalName + "': returned null");
}
}
return propValue;
}
通过对上面注入依赖代码的分析,我们已经明白了Spring IOC容器是如何将属性的值注入到Bean实例对象中去:
对于集合类型的属性,将其属性值解析为目标类型的集合后直接赋值给属性。
对于非集合类型的属性,大量使用jdk的反射机制,通过属性的getter()方法获取指定属性注入以前的值,同时调用属性的setter()方法为属性设置注入后的值。看到这里相信很多人都会明白Spring的setter()注入原理。
IOC容器中哪些鲜为人知的细节 通过前面的壮介对spring IOC容器的源码分析,我们已经基本上了解了Spring IOC容器对Bean定义资源的定位、载入和注册过程,同时也清楚了当用户通过getBean()方法向IOC容器获取被管理的Bean时,IOC容器对Bean进行的初始化和依赖注入过程,这些是SpringIOC容器的基本功能特性。Spring IOC容器还有一些高级特性,如使用lazy-init属性对Bean预初始化、FactoryBean产生或者修饰Bean对象的生成、IOC容器初始化Bean过程中使用BeanPostProcessor后置处理器对Bean生命周期事件管理等。
关于延时加载 通过前面我们对IOC容器的实现和工作原理分析,我们已经知道IOC容器的初始化过程就是对Bean定义资源的定位、载入和注册,此时容器对Bean的依赖注入并没有发生,依赖注入主要是在应用程序第一次向容器索取Bean时,通过getBean()方法的调用完成。 当Bean定义资源的 元素中配置了lazy-init=false属性时,容器将会在初始化的时候对所配置的Bean进行预实例化,Bean的依赖注入在容器初始化的时候就已经完成了。这样,当应用程序第一次向容器索取被管理的Bean时,就不会在初始化和Bean进行依赖注入了,直接从容器中获取已经完成依赖注入的线程Bean,可以提高应用第一次向容器获取Bean的性能。
1.refresh()方法 先从IOC容器的初始化过程开始,我们知道IOC容器读入已经定位的Bean定义资源是从refresh()方法开始的,我们首先从AbstractApplicationContext类的refresh()方法入手分析,源码如下:
@Override
public void refresh() throws BeansException, IllegalStateException {
synchronized (this.startupShutdownMonitor) {
// Prepare this context for refreshing.
// 调用容器准备刷新的方法,获取容器的当前时间,同时给容器设置同步标识
prepareRefresh();
// Tell the subclass to refresh the internal bean factory.
// 告诉子类启动refreshBeanFactory()方法,Bean定义资源文件的载入从
// 子类的refreshBeanFactory()方法启动
ConfigurableListableBeanFactory beanFactory = obtainFreshBeanFactory();
// Prepare the bean factory for use in this context.
// 为BeanFactory配置容器特性,例如类加载器、事件加载器等
prepareBeanFactory(beanFactory);
try {
// Allows post-processing of the bean factory in context subclasses.
// 为容器的某些子类指定特殊的BeanPost时间处理器
postProcessBeanFactory(beanFactory);
// Invoke factory processors registered as beans in the context.
// 调用所有注册的BeanFactoryPostProcessor的Bean
invokeBeanFactoryPostProcessors(beanFactory);
// Register bean processors that intercept bean creation.
// 为BeanFactory注册BeanPost时间处理器。
// BeanPostProcessor是Bean后置处理器,用于监听容器触发的事件
registerBeanPostProcessors(beanFactory);
// Initialize message source for this context.
// 初始化信息源,和国际化相关
initMessageSource();
// Initialize event multicaster for this context.
// 初始化容器事件传播器
initApplicationEventMulticaster();
// Initialize other special beans in specific context subclasses.
// 调用子类的某些特殊Bean初始化方法
onRefresh();
// Check for listener beans and register them.
// 为时间传播器注册时间监听器
registerListeners();
// Instantiate all remaining (non-lazy-init) singletons.
// 初始化所有剩余的单例Bean
finishBeanFactoryInitialization(beanFactory);
// Last step: publish corresponding event.
// 初始化容器的生命周期事件处理器,并发布容器的生命周期事件
finishRefresh();
}
catch (BeansException ex) {
if (logger.isWarnEnabled()) {
logger.warn("Exception encountered during context initialization - " +
"cancelling refresh attempt: " + ex);
}
// Destroy already created singletons to avoid dangling resources.
// 销毁已创建的Bean
destroyBeans();
// Reset 'active' flag.
// 取消refresh操作,重置容器的同步标识
cancelRefresh(ex);
// Propagate exception to caller.
throw ex;
}
finally {
// Reset common introspection caches in Spring's core, since we
// might not ever need metadata for singleton beans anymore...
resetCommonCaches();
}
}
}
在refresh() 方法中ConfigurableListableBeanFactory beanFactory = obtainFreshBeanFactory();启动了Bean定义资源的载入、注册过程,而finishBeanFactoryInitialization()方法是对注册后的Bean定义中的预实例化(lazy-init=false,Spring默认就是预实例化,即为true)的Bean进行处理的地方。
2.finishBeanFactoryInitialization处理预实例化Bean 当Bean定义资源被载入IOC容器之后,容器将Bean定义资源解析为容器内部的数据结构BeanDefinition注册到容器中,AbstractApplicationContext类中的finishBeanFactoryInitialization()方法对配置了预实例化属性的Bean进行预初始化过程,源码如下:
// 对配置了lazy-init属性的Bean进行预实例化处理
protected void finishBeanFactoryInitialization(ConfigurableListableBeanFactory beanFactory) {
// Initialize conversion service for this context.
// 这是Spring3以后新加的代码,为容器指定一个转换服务(ConversionService)
// 在对某些Bean属性进行转换时使用
if (beanFactory.containsBean(CONVERSION_SERVICE_BEAN_NAME) &&
beanFactory.isTypeMatch(CONVERSION_SERVICE_BEAN_NAME, ConversionService.class)) {
beanFactory.setConversionService(
beanFactory.getBean(CONVERSION_SERVICE_BEAN_NAME, ConversionService.class));
}
// Register a default embedded value resolver if no bean post-processor
// (such as a PropertyPlaceholderConfigurer bean) registered any before:
// at this point, primarily for resolution in annotation attribute values.
if (!beanFactory.hasEmbeddedValueResolver()) {
beanFactory.addEmbeddedValueResolver(strVal -> getEnvironment().resolvePlaceholders(strVal));
}
// Initialize LoadTimeWeaverAware beans early to allow for registering their transformers early.
String[] weaverAwareNames = beanFactory.getBeanNamesForType(LoadTimeWeaverAware.class, false, false);
for (String weaverAwareName : weaverAwareNames) {
getBean(weaverAwareName);
}
// Stop using the temporary ClassLoader for type matching.
// 为了类型匹配,停止使用临时的类加载器
beanFactory.setTempClassLoader(null);
// Allow for caching all bean definition metadata, not expecting further changes.
// 缓存容器中所有注册的BeanDefinition元数据,以防止被修改
beanFactory.freezeConfiguration();
// Instantiate all remaining (non-lazy-init) singletons.
// 将配置了lazy-init属性的单态模式bean进行预实例化
beanFactory.preInstantiateSingletons();
}
ConfigurableListableBeanFactory是一个接口,其preInstantiateSingletons()方法由其子类DefaultListableBeanFactory提供。
3、DefaultListableBeanFactory对配置lazy-init属性单态Bean的预实例化
@Override
public void preInstantiateSingletons() throws BeansException {
if (this.logger.isDebugEnabled()) {
this.logger.debug("Pre-instantiating singletons in " + this);
}
// Iterate over a copy to allow for init methods which in turn register new bean definitions.
// While this may not be part of the regular factory bootstrap, it does otherwise work fine.
List<String> beanNames = new ArrayList<>(this.beanDefinitionNames);
// Trigger initialization of all non-lazy singleton beans...
for (String beanName : beanNames) {
// 获取指定名称的Bean定义
RootBeanDefinition bd = getMergedLocalBeanDefinition(beanName);
// Bean不是抽象的,是单态模式的,且lazy-init属性配置为false
if (!bd.isAbstract() && bd.isSingleton() && !bd.isLazyInit()) {
// 如果指定名称的bean是创建容器的bean
if (isFactoryBean(beanName)) {
// FACTORY_BEAN_PREFIX="&",当Bean名称前面加"&"符号
// 时,获取的产生容器对象本身,而不是容器产生的Bean
// 调用getBean方法,出发容器对Bean实例化的依赖注入过程
final FactoryBean<?> factory = (FactoryBean<?>) getBean(FACTORY_BEAN_PREFIX + beanName);
// 标识是否需要预实例化
boolean isEagerInit;
if (System.getSecurityManager() != null && factory instanceof SmartFactoryBean) {
// 一个匿名内部类
isEagerInit = AccessController.doPrivileged((PrivilegedAction<Boolean>) () ->
((SmartFactoryBean<?>) factory).isEagerInit(),
getAccessControlContext());
}
else {
isEagerInit = (factory instanceof SmartFactoryBean &&
((SmartFactoryBean<?>) factory).isEagerInit());
}
if (isEagerInit) {
// 调用getBean方法,触发容器对Bean实例化和依赖注入过程
getBean(beanName);
}
}
else {
getBean(beanName);
}
}
}
// Trigger post-initialization callback for all applicable beans...
for (String beanName : beanNames) {
Object singletonInstance = getSingleton(beanName);
if (singletonInstance instanceof SmartInitializingSingleton) {
final SmartInitializingSingleton smartSingleton = (SmartInitializingSingleton) singletonInstance;
if (System.getSecurityManager() != null) {
AccessController.doPrivileged((PrivilegedAction<Object>) () -> {
smartSingleton.afterSingletonsInstantiated();
return null;
}, getAccessControlContext());
}
else {
smartSingleton.afterSingletonsInstantiated();
}
}
}
}
通过对lazy-init处理源码的分析,我们可以看出,如果设置了lazy-init属性,则容器在完成Bean定义的注册之后,会通过getBean方法,出发对指定Bean的初始化和依赖注入过程,这样当应用第一次向容器索取所需的Bean时,容器不再需要对Bean进行初始化和依赖注入,直接从已经完成实例化和依赖注入的Bean中取一个现成的Bean,这样就提高了第一次获取Bean的性能。
关于FactoryBean和BeanFactory 在spring中,有两个容易混淆的类:BeanFactory和FactoryBean。
BeanFactory:Bean工厂,是一个工厂(Factory),我们Spring IOC容器的最顶层接口就是这个BeanFactory,它的作用是管理Bean,即实例化、定位、配置应用程序中的对象及建立这些对象间的依赖。 FactoryBean:工厂Bean,是一个Bean,作用是产生其他Bean实例。通常情况下,这种Bean没有什么特别的要求,仅需要提供一个工厂方法,该方法用来返回其他Bean实例。通常情况下,Bean无须自己实现工厂模式,Spring容器担任工厂角色;但少数情况下,容器中Bean本身就是工厂,其作用是产生其它Bean实例。
当用户使用容器本身时,可以使用转义字符“&”来得到FactoryBean本身,以区别通过FactoryBean产生的实例对象和FactoryBean对象本身。在BeanFactory中通过如下代码定义了该转义字符: String FACTORY_BEAN_PREFIX ="&";
如果myJndiObject是一个FactoryBean,则使用&myJndiObject得到的是myJndiObject对象,而不是myJndiObject产生出来的对象。
FactoryBean源码:
// 工厂Bean,用于产生其他对象
public interface FactoryBean<T> {
/**
* Return an instance (possibly shared or independent) of the object
* managed by this factory.
* <p>As with a {@link BeanFactory}, this allows support for both the
* Singleton and Prototype design pattern.
* <p>If this FactoryBean is not fully initialized yet at the time of
* the call (for example because it is involved in a circular reference),
* throw a corresponding {@link FactoryBeanNotInitializedException}.
* <p>As of Spring 2.0, FactoryBeans are allowed to return {@code null}
* objects. The factory will consider this as normal value to be used; it
* will not throw a FactoryBeanNotInitializedException in this case anymore.
* FactoryBean implementations are encouraged to throw
* FactoryBeanNotInitializedException themselves now, as appropriate.
* @return an instance of the bean (can be {@code null})
* @throws Exception in case of creation errors
* @see FactoryBeanNotInitializedException
*/
// 获取容器管理的对象实例
@Nullable
T getObject() throws Exception;
/**
* Return the type of object that this FactoryBean creates,
* or {@code null} if not known in advance.
* <p>This allows one to check for specific types of beans without
* instantiating objects, for example on autowiring.
* <p>In the case of implementations that are creating a singleton object,
* this method should try to avoid singleton creation as far as possible;
* it should rather estimate the type in advance.
* For prototypes, returning a meaningful type here is advisable too.
* <p>This method can be called <i>before</i> this FactoryBean has
* been fully initialized. It must not rely on state created during
* initialization; of course, it can still use such state if available.
* <p><b>NOTE:</b> Autowiring will simply ignore FactoryBeans that return
* {@code null} here. Therefore it is highly recommended to implement
* this method properly, using the current state of the FactoryBean.
* @return the type of object that this FactoryBean creates,
* or {@code null} if not known at the time of the call
* @see ListableBeanFactory#getBeansOfType
*/
// 获取bean工厂创建的对象的类型
@Nullable
Class<?> getObjectType();
/**
* Is the object managed by this factory a singleton? That is,
* will {@link #getObject()} always return the same object
* (a reference that can be cached)?
* <p><b>NOTE:</b> If a FactoryBean indicates to hold a singleton object,
* the object returned from {@code getObject()} might get cached
* by the owning BeanFactory. Hence, do not return {@code true}
* unless the FactoryBean always exposes the same reference.
* <p>The singleton status of the FactoryBean itself will generally
* be provided by the owning BeanFactory; usually, it has to be
* defined as singleton there.
* <p><b>NOTE:</b> This method returning {@code false} does not
* necessarily indicate that returned objects are independent instances.
* An implementation of the extended {@link SmartFactoryBean} interface
* may explicitly indicate independent instances through its
* {@link SmartFactoryBean#isPrototype()} method. Plain {@link FactoryBean}
* implementations which do not implement this extended interface are
* simply assumed to always return independent instances if the
* {@code isSingleton()} implementation returns {@code false}.
* <p>The default implementation returns {@code true}, since a
* {@code FactoryBean} typically manages a singleton instance.
* @return whether the exposed object is a singleton
* @see #getObject()
* @see SmartFactoryBean#isPrototype()
*/
// Bean工厂创建的对象是否是单态模式,如果是单态模式,则整个容器中只有一个实例
// 对象,每次请求都返回同一个实例对象
default boolean isSingleton() {
return true;
}
}
AbstractBeanFactory的getBean()方法调用FactoryBean 在前面我们分析Spring IOC容器实例化Bean并进行依赖注入过程的源码时,提到在getBean()方法出发容器实例化Bean的时候会调用AbstractBeanFactory的doGetBean()方法进行实例化的过程,源码如下:
// 真正实现向IOC容器获取Bean的功能,也是出发依赖注入功能的地方
@SuppressWarnings("unchecked")
protected <T> T doGetBean(final String name, @Nullable final Class<T> requiredType,
@Nullable final Object[] args, boolean typeCheckOnly) throws BeansException {
// 根据指定的名称获取被管理Bean的名称,剥离指定名称中对容器的相关依赖
// 如果指定的是别名,将别名转换为规范的Bean名称
final String beanName = transformedBeanName(name);
Object bean;
// 先从缓存中取是否已经有被创建过的单态类型的Bean
// 对于单例模式的Bean整个IOC容器中只创建一次,不需要重复创建
// Eagerly check singleton cache for manually registered singletons.
Object sharedInstance = getSingleton(beanName);
// IOC容器创建单例模式Bean实例对象
if (sharedInstance != null && args == null) {
if (logger.isDebugEnabled()) {
// 如果指定名称的Bean在容器中已有单例模式的Bean被创建
// 直接返回已经创建的Bean
if (isSingletonCurrentlyInCreation(beanName)) {
logger.debug("Returning eagerly cached instance of singleton bean '" + beanName +
"' that is not fully initialized yet - a consequence of a circular reference");
}
else {
logger.debug("Returning cached instance of singleton bean '" + beanName + "'");
}
}
bean = getObjectForBeanInstance(sharedInstance, name, beanName, null);
}
else {
// Fail if we're already creating this bean instance:
// We're assumably within a circular reference.
// 缓存没有正在创建的单例模式bean
// 缓存中已经有已经创建的原型模式Bean
// 但是由于循环引用的问题导致实例化对象失败
if (isPrototypeCurrentlyInCreation(beanName)) {
throw new BeanCurrentlyInCreationException(beanName);
}
// Check if bean definition exists in this factory.
// 对IOC容器中是否存在指定名称的BeanDefinition进行检查,首先检查是否
// 能在当前的BeanFactory中获取所需要的bean,如果不能则委托当前容器的
// 父级容器中查找,如果还是找不到则沿着容器的继承体向父级容器查找
BeanFactory parentBeanFactory = getParentBeanFactory();
// 当前容器的父级容器存在,且当前容器中不存在指定名称的bean
if (parentBeanFactory != null && !containsBeanDefinition(beanName)) {
// 解析指定bean名称的原始名称
// Not found -> check parent.
String nameToLookup = originalBeanName(name);
if (parentBeanFactory instanceof AbstractBeanFactory) {
return ((AbstractBeanFactory) parentBeanFactory).doGetBean(
nameToLookup, requiredType, args, typeCheckOnly);
}
else if (args != null) {
// Delegation to parent with explicit args.
// 委派父级容器根据指定名称和现实的参数查找
return (T) parentBeanFactory.getBean(nameToLookup, args);
}
else {
// No args -> delegate to standard getBean method.
// 委派父级容器根据指定名称和类型查找
return parentBeanFactory.getBean(nameToLookup, requiredType);
}
}
// 创建的Bean是否需要进行类型验证,一般不需要
if (!typeCheckOnly) {
// 向容器标记指定的bean已经被创建
markBeanAsCreated(beanName);
}
try {
// 根据指定bean名称获取其父级的bean定义
// 主要解决bean继承时子类合并父类公共属性问题。
final RootBeanDefinition mbd = getMergedLocalBeanDefinition(beanName);
checkMergedBeanDefinition(mbd, beanName, args);
// Guarantee initialization of beans that the current bean depends on.
// 获取当前Bean所有依赖Bean名称
String[] dependsOn = mbd.getDependsOn();
// 如果当前Bean有依赖bean
if (dependsOn != null) {
for (String dep : dependsOn) {
if (isDependent(beanName, dep)) {
throw new BeanCreationException(mbd.getResourceDescription(), beanName,
"Circular depends-on relationship between '" + beanName + "' and '" + dep + "'");
}
// 递归调用getBean方法,获取当前Bean的依赖Bean
registerDependentBean(dep, beanName);
// 把被依赖Bean注册给当前依赖的Bean
getBean(dep);
}
}
// Create bean instance.
// 创建单例模式Bean的实例对象
if (mbd.isSingleton()) {
// 这是使用了一个匿名内部类,创建bean实例对象,并且注册给所依赖的对象
sharedInstance = getSingleton(beanName, () -> {
try {
// 创建一个指定Bean实力对象,如果父级继承,则合并子类和父类的定义
return createBean(beanName, mbd, args);
}
catch (BeansException ex) {
// Explicitly remove instance from singleton cache: It might have been put there
// eagerly by the creation process, to allow for circular reference resolution.
// Also remove any beans that received a temporary reference to the bean.
// 显式从容器单例模式bean缓存中清除实例对象
destroySingleton(beanName);
throw ex;
}
});
// 获取给定Bean的实例对象
bean = getObjectForBeanInstance(sharedInstance, name, beanName, mbd);
}
// IOC容器创建原型模式bean实力对象
else if (mbd.isPrototype()) {
// It's a prototype -> create a new instance.
// 原型模式是每次都会创建一个新的对象
Object prototypeInstance = null;
try {
// 回调beforePrototypeCreation方法,默认功能是注册当前创建的原型对象
beforePrototypeCreation(beanName);
// 创建指定Bean对象实例
prototypeInstance = createBean(beanName, mbd, args);
}
finally {
// 回调afterPrototypeCreation方法,默认的功能告诉IOC容器指定Bean的原型对象不再创建
afterPrototypeCreation(beanName);
}
// 获取给定Bean的实例对象
bean = getObjectForBeanInstance(prototypeInstance, name, beanName, mbd);
}
// 要创建的Bean既不是单例模式,也不是原型模式,则根据Bean定义资源中
// 配置的生命周期范围,选择实例化Bean的合适方法,这种在web应用程序中
// 比较常用,如:request、session、application等生命周期
else {
String scopeName = mbd.getScope();
final Scope scope = this.scopes.get(scopeName);
// Bean定义资源中没有配置生命周期范围,则Bean定义不合法
if (scope == null) {
throw new IllegalStateException("No Scope registered for scope name '" + scopeName + "'");
}
try {
// 这里又使用了一个匿名内部类,获取一个指定生命周期范围的实力
Object scopedInstance = scope.get(beanName, () -> {
beforePrototypeCreation(beanName);
try {
return createBean(beanName, mbd, args);
}
finally {
afterPrototypeCreation(beanName);
}
});
// 获取给定的实例对象
bean = getObjectForBeanInstance(scopedInstance, name, beanName, mbd);
}
catch (IllegalStateException ex) {
throw new BeanCreationException(beanName,
"Scope '" + scopeName + "' is not active for the current thread; consider " +
"defining a scoped proxy for this bean if you intend to refer to it from a singleton",
ex);
}
}
}
catch (BeansException ex) {
cleanupAfterBeanCreationFailure(beanName);
throw ex;
}
}
// Check if required type matches the type of the actual bean instance.
// 对创建的Bean实例对象进行类型检查
if (requiredType != null && !requiredType.isInstance(bean)) {
try {
T convertedBean = getTypeConverter().convertIfNecessary(bean, requiredType);
if (convertedBean == null) {
throw new BeanNotOfRequiredTypeException(name, requiredType, bean.getClass());
}
return convertedBean;
}
catch (TypeMismatchException ex) {
if (logger.isDebugEnabled()) {
logger.debug("Failed to convert bean '" + name + "' to required type '" +
ClassUtils.getQualifiedName(requiredType) + "'", ex);
}
throw new BeanNotOfRequiredTypeException(name, requiredType, bean.getClass());
}
}
return (T) bean;
}
// 获取给定的Bean的实例对象,主要是完成FactoryBean的相关处理
protected Object getObjectForBeanInstance(
Object beanInstance, String name, String beanName, @Nullable RootBeanDefinition mbd) {
// Don't let calling code try to dereference the factory if the bean isn't a factory.
// 容器已经得到了Bean实例对象,这个实例对象可能是一个普通的Bean
// 也可能是一个工厂Bean,如果是一个工厂Bean,则使用它创建一个Bean实例对象。
// 如果调用本身就想获得一个容器的引用,则指定返回这个工厂bean的实例对象。
// 如果指定的名称是容器的解引用(dereference,即对象了本身而非内存地址)。
// 且Bean实例也不是创建Bean实例对象的工厂Bean
if (BeanFactoryUtils.isFactoryDereference(name) && !(beanInstance instanceof FactoryBean)) {
throw new BeanIsNotAFactoryException(transformedBeanName(name), beanInstance.getClass());
}
// Now we have the bean instance, which may be a normal bean or a FactoryBean.
// If it's a FactoryBean, we use it to create a bean instance, unless the
// caller actually wants a reference to the factory.
// 如果Bean实例不是工厂bean,或者指定名称是容器的解引用。
// 调用者向获取对容器的引用,则直接返回当前的bean的实例。
if (!(beanInstance instanceof FactoryBean) || BeanFactoryUtils.isFactoryDereference(name)) {
return beanInstance;
}
// 处理指定名称不是容器的解引用,或者根据名称获取的Bean实例对象是一个工厂Bean
// 使用工厂Bean创建一个Bean的实例对象
Object object = null;
if (mbd == null) {
// 从Bean工厂缓存中获取给定名称的Bean的实例对象
object = getCachedObjectForFactoryBean(beanName);
}
// 让Bean工厂生产给定名称的Bean对象实例
if (object == null) {
// Return bean instance from factory.
FactoryBean<?> factory = (FactoryBean<?>) beanInstance;
// 如果从Bean工厂生产的Bean是单态模式,则缓存
// Caches object obtained from FactoryBean if it is a singleton.
if (mbd == null && containsBeanDefinition(beanName)) {
// 从容器中获取指定名称的bean定义,如果继承基类,则合并基类相关属性
mbd = getMergedLocalBeanDefinition(beanName);
}
// 如果从容器得到bean定义信息,并且bean定义信息不是虚构的
// 则让工厂bean生产bean实例对象
boolean synthetic = (mbd != null && mbd.isSynthetic());
// 调用FactoryBeanRegistrySupport类的getObjectFromFactoryBean方法,
// 实例工厂Bean生产Bean对象实例的过程
object = getObjectFromFactoryBean(factory, beanName, !synthetic);
}
return object;
}
在上面获取给定bean的实例对象的getObjectForBeanInstance()方法中,会调用FactoryBeanRegistrySupport类的getObjectFromFactoryBean()方法,该方法实现了Bean工厂生产Bean实例对象。
Dereference(解引用):一个在C/C++中应用比较多的术语,在C++中,”*”是解引用符号,而“&”是引用符号,解引用时只变量指向的是所引用对象的本身数据,而不是引用对象的内存地址。
3、AbstractBeanFactory生产Bean实例对象 AbstractBeanFactory类中生产Bean实例对象的主要源码如下:
// 调用bean工厂的getObject方法生产指定的Bean的实例对象
private Object doGetObjectFromFactoryBean(final FactoryBean<?> factory, final String beanName)
throws BeanCreationException {
Object object;
try {
if (System.getSecurityManager() != null) {
// 实现PrivilegedExceptionAction接口的匿名内置类
// 根据JVM检查权限,然后决定BeanFactory创建实例对象
AccessControlContext acc = getAccessControlContext();
try {
object = AccessController.doPrivileged((PrivilegedExceptionAction<Object>) () ->
factory.getObject(), acc);
}
catch (PrivilegedActionException pae) {
throw pae.getException();
}
}
else {
// 调用BeanFactory接口实现类的创建对象方法
object = factory.getObject();
}
}
catch (FactoryBeanNotInitializedException ex) {
throw new BeanCurrentlyInCreationException(beanName, ex.toString());
}
catch (Throwable ex) {
throw new BeanCreationException(beanName, "FactoryBean threw exception on object creation", ex);
}
// Do not accept a null value for a FactoryBean that's not fully
// initialized yet: Many FactoryBeans just return null then.
// 创建出来的实例对象为Null,或者因为单态对象正在创建而返回null
if (object == null) {
if (isSingletonCurrentlyInCreation(beanName)) {
throw new BeanCurrentlyInCreationException(
beanName, "FactoryBean which is currently in creation returned null from getObject");
}
object = new NullBean();
}
return object;
}
从上面的源码分析中,我们可以看出,BeanFactory接口调用其实现类的getObject方法实现创建Bean实例对象的功能。
### 4、工厂Bean的实现类getObject方法创建Bean实例对象 FactoryBean的实现类有非常多,比如:Proxy、RMI、JNDI、ServletContextFactoryBean等等,FactoryBean接口为Spring容器提供了一个很好的封装机制,具体的getObject()有不同的实现类根据不同的实现策略来具体提供,我们分析一个最简单的AnnotationTestBeanFactory的实现源码:
public class AnnotationTestBeanFactory implements FactoryBean<FactoryCreatedAnnotationTestBean> {
private final FactoryCreatedAnnotationTestBean instance = new FactoryCreatedAnnotationTestBean();
public AnnotationTestBeanFactory() {
this.instance.setName("FACTORY");
}
@Override
public FactoryCreatedAnnotationTestBean getObject() throws Exception {
return this.instance;
}
// AnnotationTestBeanFactory产生Bean实例对象的实现
@Override
public Class<? extends IJmxTestBean> getObjectType() {
return FactoryCreatedAnnotationTestBean.class;
}
@Override
public boolean isSingleton() {
return true;
}
}
其他的Proxy、RMI、JNDI等等,都是根据相应的策略提供getObject()的实现。这里不做一一分析,这已经不是Spring的核心功能,感兴趣的小伙伴可以再深入研究。
再述autowiring Spring IOC容器
显示管理:通过BeanDefinition的属性值和构造方法实现Bean依赖关系管理。
autowiring:Spring IOC容器的依赖自动装配功能,不需要对Bean属性的依赖关系做显式的声明,只需要在配置好autowiring属性,IOC容器会自动使用反射查找属性的类型和名称,然后基于属性的类型或者名称来自动配置容器中管理的bean,从而自动完成依赖注入。
通过对autowiring自动装配的理解,我们知道了容器对bean的自动装配繁盛在容器对bean依赖注入的过程中。在前面对spring IOC容器的依赖注入过程源码分析中,我们已经知道了容器对bean实例对象的属性注入的处理方式在AbstractAutoWiringCapableBeanFactory类中的populateBean()方法中,我们通过程序流程分析autowiring的实现原理:
1、AbstractAutoWireCapableBeanFactory对Bean实例进行属性依赖注入 应用第一次通过getBean()方法配置lazy-init预实例化属性的除外,向IOC容器获取bean时,容器创建bean实例对象,并且对bean实例对象进行属性依赖注入,AbstractAutoWireCapableBeanFactory的populateBean()方法是实现Bean属性依赖注入的功能,其主要源码如下:
// 将bean属性设置到生成的实例对象上
protected void populateBean(String beanName, RootBeanDefinition mbd, @Nullable BeanWrapper bw) {
if (bw == null) {
if (mbd.hasPropertyValues()) {
throw new BeanCreationException(
mbd.getResourceDescription(), beanName, "Cannot apply property values to null instance");
}
else {
// Skip property population phase for null instance.
return;
}
}
// Give any InstantiationAwareBeanPostProcessors the opportunity to modify the
// state of the bean before properties are set. This can be used, for example,
// to support styles of field injection.
boolean continueWithPropertyPopulation = true;
if (!mbd.isSynthetic() && hasInstantiationAwareBeanPostProcessors()) {
for (BeanPostProcessor bp : getBeanPostProcessors()) {
if (bp instanceof InstantiationAwareBeanPostProcessor) {
InstantiationAwareBeanPostProcessor ibp = (InstantiationAwareBeanPostProcessor) bp;
if (!ibp.postProcessAfterInstantiation(bw.getWrappedInstance(), beanName)) {
continueWithPropertyPopulation = false;
break;
}
}
}
}
if (!continueWithPropertyPopulation) {
return;
}
// 获取容器解析bean定义资源时为BeanDefinition中设置的属性值
PropertyValues pvs = (mbd.hasPropertyValues() ? mbd.getPropertyValues() : null);
// 对依赖注入处理,首先处理autowiring自动装配的依赖注入
if (mbd.getResolvedAutowireMode() == RootBeanDefinition.AUTOWIRE_BY_NAME ||
mbd.getResolvedAutowireMode() == RootBeanDefinition.AUTOWIRE_BY_TYPE) {
MutablePropertyValues newPvs = new MutablePropertyValues(pvs);
// Add property values based on autowire by name if applicable.
// 根据bean类型进行autowiring自动装配处理
if (mbd.getResolvedAutowireMode() == RootBeanDefinition.AUTOWIRE_BY_NAME) {
autowireByName(beanName, mbd, bw, newPvs);
}
// Add property values based on autowire by type if applicable.
// 根据bean类型进行autowiring自动装配处理
if (mbd.getResolvedAutowireMode() == RootBeanDefinition.AUTOWIRE_BY_TYPE) {
autowireByType(beanName, mbd, bw, newPvs);
}
pvs = newPvs;
}
boolean hasInstAwareBpps = hasInstantiationAwareBeanPostProcessors();
boolean needsDepCheck = (mbd.getDependencyCheck() != RootBeanDefinition.DEPENDENCY_CHECK_NONE);
if (hasInstAwareBpps || needsDepCheck) {
if (pvs == null) {
pvs = mbd.getPropertyValues();
}
PropertyDescriptor[] filteredPds = filterPropertyDescriptorsForDependencyCheck(bw, mbd.allowCaching);
if (hasInstAwareBpps) {
for (BeanPostProcessor bp : getBeanPostProcessors()) {
if (bp instanceof InstantiationAwareBeanPostProcessor) {
InstantiationAwareBeanPostProcessor ibp = (InstantiationAwareBeanPostProcessor) bp;
pvs = ibp.postProcessPropertyValues(pvs, filteredPds, bw.getWrappedInstance(), beanName);
if (pvs == null) {
return;
}
}
}
}
if (needsDepCheck) {
checkDependencies(beanName, mbd, filteredPds, pvs);
}
}
if (pvs != null) {
// 对属性进行注入
applyPropertyValues(beanName, mbd, bw, pvs);
}
}
2、Spring IOC容器根据Bean名称或者类型进行autowiring自动依赖注入
// 根据类型对属性进行自动依赖注入
protected void autowireByType(
String beanName, AbstractBeanDefinition mbd, BeanWrapper bw, MutablePropertyValues pvs) {
// 获取用户定义的类型转换器
TypeConverter converter = getCustomTypeConverter();
if (converter == null) {
converter = bw;
}
// 存放解析的要注入的属性
Set<String> autowiredBeanNames = new LinkedHashSet<>(4);
// 对bean对象中菲简单属性(不是简单继承的对象,如8中原始类型,字符
// URL等都是简单属性)进行处理
String[] propertyNames = unsatisfiedNonSimpleProperties(mbd, bw);
for (String propertyName : propertyNames) {
try {
// 获取指定属性名称的属性描述器
PropertyDescriptor pd = bw.getPropertyDescriptor(propertyName);
// Don't try autowiring by type for type Object: never makes sense,
// even if it technically is a unsatisfied, non-simple property.
// 不对Object类型的属性进行autowiring自动依赖注入
if (Object.class != pd.getPropertyType()) {
// 获取属性的setter方法
MethodParameter methodParam = BeanUtils.getWriteMethodParameter(pd);
// Do not allow eager init for type matching in case of a prioritized post-processor.
// 检查指定类型是否可以转换为目标对象的类型
boolean eager = !PriorityOrdered.class.isInstance(bw.getWrappedInstance());
// 创建一个要被注入的依赖描述
DependencyDescriptor desc = new AutowireByTypeDependencyDescriptor(methodParam, eager);
// 根据容器的bean定义解析依赖关系,返回所有要被注入的bean对象
Object autowiredArgument = resolveDependency(desc, beanName, autowiredBeanNames, converter);
if (autowiredArgument != null) {
// 为属性赋值所引用的对象
pvs.add(propertyName, autowiredArgument);
}
for (String autowiredBeanName : autowiredBeanNames) {
// 指定名称属性注册依赖bean名称,进行属性依赖注入
registerDependentBean(autowiredBeanName, beanName);
if (logger.isDebugEnabled()) {
logger.debug("Autowiring by type from bean name '" + beanName + "' via property '" +
propertyName + "' to bean named '" + autowiredBeanName + "'");
}
}
// 释放已自动注入的属性
autowiredBeanNames.clear();
}
}
catch (BeansException ex) {
throw new UnsatisfiedDependencyException(mbd.getResourceDescription(), beanName, propertyName, ex);
}
}
}
通过上面的源码分析,我们可以看出来通过属性名进行自动依赖注入的相比通过属性类型进行自动依赖注入要简单一些,但是真正实现属性注入的是DefaultSingletonBeanRegistry类的registerDependentBean()方法。
3、DefaultSingletonBeanRegistry的registerDependentBean()方法对属性注入
// 为指定的bean注入依赖的bean
public void registerDependentBean(String beanName, String dependentBeanName) {
// A quick check for an existing entry upfront, avoiding synchronization...
// 处理bean名称,将别名转换为规范的bean名称
String canonicalName = canonicalName(beanName);
Set<String> dependentBeans = this.dependentBeanMap.get(canonicalName);
if (dependentBeans != null && dependentBeans.contains(dependentBeanName)) {
return;
}
// No entry yet -> fully synchronized manipulation of the dependentBeans Set
// 多线程同步,保证容器内数据的一致性
// 先从容器中,bean名称--》全部依赖bean名称集合查找给定名称bean的依赖bean
synchronized (this.dependentBeanMap) {
// 获取给定名称bean的所有依赖bean的名称
dependentBeans = this.dependentBeanMap.get(canonicalName);
if (dependentBeans == null) {
// 为bean设置依赖bean的信息
dependentBeans = new LinkedHashSet<>(8);
this.dependentBeanMap.put(canonicalName, dependentBeans);
}
// 向容器中,bean名称--》全部依赖bean名称集合添加bean的依赖信息
// 即,将bean所依赖的bean添加到容器的集合中
dependentBeans.add(dependentBeanName);
}
// 从容器中:bean名称--》指定名称bean的依赖bean集合查找指定名称bean的依赖bean
synchronized (this.dependenciesForBeanMap) {
Set<String> dependenciesForBean = this.dependenciesForBeanMap.get(dependentBeanName);
if (dependenciesForBean == null) {
dependenciesForBean = new LinkedHashSet<>(8);
this.dependenciesForBeanMap.put(dependentBeanName, dependenciesForBean);
}
// 向容器中:bean名称--》指定bean的依赖bean名称集合添加bean的依赖信息
// 即,将bean所依赖的bean添加到容器的集合中
dependenciesForBean.add(canonicalName);
}
}
通过对autowiring的源码分析,我们可以看出,autowiring的实现过程:
对bean的属性调用了getBean()方法,完成依赖bean的初始化和依赖注入。
将依赖的bean的属性引用设置到被依赖的bean属性上
将依赖bean的名称和依赖bean的名称存储到ioc容器的集合中
Spring IOC容器的autowiring属性自动依赖注入是一个很方法的特性,可以简化开发时的配置,但是凡是都有两面性,自动属性依赖注入也有不足,首先,bean的依赖关系在配置文件中无法清楚的看出,对于维护造成一定困难。其次,由于自动依赖注入是spring容器自动执行的,容器是不会智能的判断的,如果配置不当,将会带来无法预知的后果,所以自动依赖注入特性在使用时还是综合考虑。
03 May 2025